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1. Summary

Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles. This
paper contains a description of our approach to develop control algorithms for the Novel
Unmanned Ground Vehicle (NUGV) to address this problem. The NUGYV is a six-
degree-of-freedom, sensor-rich small mobile robot designed to demonstrate auto-learning
capabilities for the improvement of mobility through variegated terrain. The learning
processes we plan to implement are composed of classical and operant conditionings of
novel responses built upon pre-defined fixed action patterns. The fixed action patterns
will be in turn modulated by pre-defined low-level reactive behaviors that, as
unconditioned responses, should continuously serve to maintain the viability of the robot
during the activations of the fixed action patterns and of the higher-order (conditioned)
behaviors. The sensors of the internal environment that govern the low-level reactive
behaviors also serve as the criteria for operant conditioning. Using this adaptive
controller, the NUGYV should learn to negotiate difficult obstacles, and to protect itself
from collisions and falls.

! At the time of this writing, the NUGV is in the final stages of detail design and prototyping by Automated
Controlled Environments, Inc., 25133 Avenue Tibbitts, Unit A, Valencia, CA 91355, (661) 775-7754 Fax:
(661) 775-7770, under contract N66001-02-M-X105, with support from the Office of the Secretary of
Defense Joint Robotics Program (JRP). The author gratefully appreciates the support of the JRP
Coordinator, and the assistance of ACEi in the preparation of this manuscript.
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2. Objectives
2.1. To What Should We Aspire?

The standard to which we should aspire in the control processes of our robots is not an
indolent, ineffectual, and operator’s attention consuming automaton, but rather a mobile,
self-sufficient, loyal, cooperative and obedient agent, somewhat like a hundred-pound
Golden Retriever.

2.2. Why Should We Aspire to This?

We conceive of our robot as an aid to the operator, not the other way around. Thus our
robot should be there when the operator needs it, ready to assist. Otherwise, the robot
should stay out of the way, and take care of itself.

2.3. Is This Not Science Fiction?

This will not be science fiction if we define carefully the needs of the robot and install
low-level control process on the robot to provide for these needs. Second, if we couple
one or more of the solutions to the critical needs of the robot with some activity of its
operators, the probability that the robot will track, trail, and learn to cooperate with its
human operators should be increased.

2.4. Resolving the Conflict

The reader may sense a contradiction here. I suggest above that the robot must have low-
level control processes that permit it to take care of itself, while at the same time state
that these must be coupled to activities of the human operator so that the robot is in some
way dependent upon that operator. Can we have both independence and dependence, or
self-interest coincident with social-interest? Can the robot exercise independence by
virtue of its low-level control processes, and then become dependent upon a human
operator through the acquisition of higher order robot behaviors that also provide service
to the operator? In the following, I will attempt to explain how we can. Resolving this
conﬂizct between self-interest and social-interest should provide for the usefulness of the
robot”.

? Many of the terms that I will use in this discussion come from biology and psychology. They are thus
loaded with anthropomorphic connotations. I hope that the reader does not become too suspicious at this
point, but looks for my later description of algorithms that will implement these concepts in the artificial
system of robot hardware and software.
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3. Control with Independent Agents

To achieve our objectives, we will implement a control architecture that differs
significantly from the principal approach taken today in mobile robotics. First, we view
our robot as an independent agent, and will attempt to endow it with all of the necessary
capabilities to promote its own welfare. Second, we view our own role in the process
more as director and collaborator, than as user and operator, and, as such, will employ
methods of control that involve more the leash than the lever.

3.1. Control by Negation

To the degree that the robot will be self-controlled it will also be self-motivated. Then, as
it is self-motivated, the operator3 may be excluded from giving explicit instructions on
the direction and intensity of any robot action. Rather, the director (or human
collaborator) should be able to provide information on the intended objective, to which
the robot would then be socially motivated to pursue. The director may then observe the
progress of the robot toward that objective, and intervene only as necessary to veto or
negate a particular action that the robot is attempting to execute. Once an action is
negated, the robot would, on its own initiative, select a different approach to the
objective”.

3.2. The Purpose of Local Control is Preservation

An agent is useful only while it is viable. An agent’s viability is preserved when it
remains physically intact, its sensors and effectors function as designed, and its energy
reserves are adequate for any exigencies. Factors that jeopardize these conditions are
variously extremes of temperature, shock and other collisions, and un-replenished power
consumption.

3.3. Homeostasis is an Optimal State for Preservation

Homeostasis is the state of the agent that optimally predisposes it to perform some
additional activities within its present environment’. Thus an agent preserves itself by
performing activities that maintain its homeostasis and by avoiding actions that seriously
disturb its homeostasis. Various internal sensors measure the state of the agent, defining
its homeostasis. At a very low level of control, these sensors are coupled with subsystems
that enable the activity of the agent. When a subsystem is failing, the agent’s activity is
threatened, and some change in activity should occur to restore the subsystem
functionality, in other words, to restore homeostasis.

? The term operator is inconsistent with the control of an independent agent. We operate machines, and
political operatives are defined by their ability to operate politicians, but we direct actors and employees.
* Negation will be effective only to the degree that the operator can both tempt and threaten the robot, and
to the degree that the robot can generate alternative actions to achieve the intended objective. We will
discuss these possibilities later in this paper.

> The permission of additional behavior is also known as survival.
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4. A Control Architecture for Independence and Survival

The control processes (algorithms) for our robot must execute within the constraints
imposed upon it by our mechanical design, sensors, electronics, and a few (very few)
behavioral preferences. All of these things we provide to the robot in assembly, and are
analogous to the ontological implementation of a genetic code.

4.1. The Physical Constraints

Developing a local control capability through the use of artificial intelligence (AI)
algorithms should prove feasible in an embodied system such as our Novel UGV. The
physical system of the Novel UGV provides not only constraints, but also a means to
complete feedback loops with the environment that is essential for stability.

The physical equipment of our robot, that will enable and constrain our Al algorithms, is
shown in Figures 1, 2 and 3. The Novel UGV is composed of three principal segments, a
central core, and two pods. All three segments contain electrical power, power
transmission mechanisms, sensors for both the internal and external environments, radios
for inter-pod communication, and electronics for local processing. The core contains
radios for communication with the operator control unit (OCU)).

The two pods are tracked for conventional tank-type motion across planar surfaces. The
pods are each connected to the central core by a single axle, about which the pods can
rotate. These two axles are mounted at either end of the core, and laterally near the end of
each pod. The axles, with pods attached, can rotate about the ends of the core.

Figure 1. Outer appearance of the Novel UGV
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The NUGYV is symmetrical on all major axes, so that if the image in Figure 1 was rotated
180 degrees in any direction, it would appear the same. Sensors for the external
environment (video cameras, SONAR, and IR proximity detectors) are located on both
ends of the core faceplates, and (sans video cameras) on the outboard sides of the two

pods.
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Figure 2. Exterior dimensions of the Novel UGV in inches.

The total weight of the first prototype Novel UGV should be approximately 30 pounds.
The use of lighter materials in its construction should reduce this weight by about 30%.
The vehicle may scale upwards to increase payload and energy storage capacities.
Downward scalability will be limited by the availability of suitably scaled electronics,
energy transmissions, sensors, and energy density storage or recovery devices. Recent
developments in micro-electromechanical systems (MEMS) promise to significantly push
back limitations to the first three, but micro energy storage or recovery issues are yet to
be addressed.
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Figure 3. Cutaway of the Novel UGV showing components.

The layout of some of the internal components of the NUGV can be seen in Figure 3.
Batteries are represented by gray cylinders, circuit board are shown in light green, and
power transmission devices are shown as black cylinders and belts. Many wires, cables,
and other obscuring components are not shown for clarity.

4.2. Multiple Degrees of Motion Freedom Allow Multiple Conformations

The physical architecture of our robot permits it to assume several different
conformations. Our physical architecture enables six mobility degrees of freedom®. For
comparison, the Foster-Miller Talon tracked robot has two, the iRobot PackBot tracked
robot with flipper assist has three, and the Sony SDR-4X humanoid robot has twenty-
eight, more or less. A sample of the different conformations that are possible with the
Novel UGV’s six degrees of freedom is given in Figure 4. The variable conformation of
the vehicle permits a large diversity of behavioral responses to environmental conditions.
In general the degree of behavioral complexity possible in a mobile agent is a non-linear
function of the mobility degrees of freedom.

Each of the conformations depicted in Figure 4 can be achieved or passed through by a
variety of combinations of pod motions.

® The simultaneous remote control of six mobility degrees of freedom would pose a significant challenge
for a human operator. For this and other reasons we intend to automate much of the local control processes.
As we expand the number of mobility degrees of freedom in order to increase the opportunity for increased
behavioral complexity in our development of even more capable robots, this local automation will take on
even greater importance.
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Figure 4. Various possible robot conformations.

Of the robot’s six degrees of freedom of movement, the two degrees of freedom
associated with the camber axes are limited in transit, while the other four degrees of
freedom are rotationally continuous.

Each conformation shown in Figure 4 will have a different utility for one of the different
topologies of the surfaces over which the robot will attempt to move. Because the robot is
symmetrical along its lateral (X, side to side), coronal (Y, top to bottom), and sagittal (Z,
end to end) axes, there will always be two absolute conformations with respect to gravity
that will accomplish the same task in the same way.

Given a planar surface with small physical texture relative to the vehicle, the most
efficient conformation of the robot is expected to be that of Figure 4.a. The vehicle is
most stable in this conformation as the maximum amount of track contact with the planar
surface is possible and the vehicle has the lowest center of gravity. From this
conformation the vehicle could execute turns by skid steering wherein the track velocities
are varied between the pods to rotate the vehicle while in place or while progressing.

10
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The conformation shown in Figure 4.b, the open position, could be most useful when a
high barrier must be scaled, or when a narrow chasm or gulf (negative obstacle) with a
width not in excess of the length of one pod must be crossed.

The conformation in Figure 4.c could be useful for elevating the cameras for improved
perspective, and for passing over occasional obstacle clumps.

The conformations of Figures 4.d and 4.f could permit the vehicle to maintain stable
traction on irregular surfaces such as beams, tree branches, gabled rooftops, and pipes
(inside or out). This conformation would also permit the vehicle to avoid high centering
on boulders and other irregularities in the plane of traversal.

The conformation in Figure 4.e represents the pose the robot might take in approaching a
step change on a planar surface.

The choice of conformations for any set of environmental conditions would have to
depend upon the robot’s ability to assess those conditions, and recall previous
conformations that accomplished a task objective and met the optimization criteria.

A second problem is the morphing from one conformation to the more optimal
conformation without losing friction or balance. I will address these problems
progressively through the paper.

4.3. Information Flow During Control
The different components of the physical architecture fall within the following classes:

= Sensors of the internal environment

= Sensors of the external environment

= Effectors composed of motors and transmission elements
= Energy storage composed of batteries

= Computational resources

The computational resources provide the substrate for connectivity matrices between
sensors and effectors. Theses matrices are composed of fixed and plastic elements

These components are graphically shown in Figure 5. The arrows of Figure 5 indicate the
direction of information flow. The control laws are embedded in the two boxes labeled
“fixed connections” and “plastic connections”. The fixed connections are established
primarily by design, while the plastic connections are established primarily through the
vehicle’s experience in operation, though based upon pre-defined mechanisms. Feedback
is indicated in the horizontal arrows between the boxes of connections, and in the line
through the environment that provides information on the physical consequences of the
robot’s behavior.

11
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Figure 5. Schematic Architecture of the Novel UGV Control System

4.4. Representation of the Control Output

Since our Novel UGV is symmetrical on all axes, we can define top vs. bottom, left vs.
right, and front vs. back only with respect to gravity and to the direction in which the
vehicle is moving. The six motors therefore can have an absolute identification and a
relative identification. For most of our discussion I will use the relative identification,
recognizing that the core sensors for gravity and direction of motion will have to route
the motor commands (M) to the appropriate motors in the appropriate way to execute the
desired action.

Each of our six motors can turn in either direction. We represent this by 12 output
elements. The torque on the motors will be proportional to applied voltage. We represent
the applied voltage by the numerical value on the output element. Thus we have the
following elements in our motor vector (M)’

CL, for camber left pod,

CLx, for camber left pod counter clockwise,
CR, for camber right pod,

CRx, for camber right pod counter clockwise,
RL, for rotation of left pod,

RLx, for rotation of left pod counter clockwise,
RR, for rotation of right pod,

" Throughout this paper, I will indicate vector variables by bold type, and scalar variables in regular type.

12
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RRx, for rotation of right pod counter clockwise,
TL, for track rotation of left pod,

TLx, for track rotation of left pod counter clockwise,
TR, track rotation of right pod, and

TRx, track rotation of right pod counter clockwise.

Where x is always a counter clockwise rotation from the perspective of the vehicle. In
general, to get the track pods coordinated in the direction of travel of the vehicle, one pod
must move clockwise while the other pod moves counter clockwise.

As it is impossible for any one of the motors to turn in both directions at the same time,
we should provide for contradictory commands to the same motor to cancel at the output
element. For example:

MCL =CL -CLx
4.5. Sensors of the Internal Environment

We have a sensor field composed of numerous sensors of the internal environment. These
include nine accelerometers (three for each of two pods, and three for the core), three
core magnetometers, four track rotation sensors (two per pod), sixteen touch sensitive
whiskers (four on the ends of each of the pods), two core faceplate pressure sensors (one
at each end of the core), eighty plate pressure sensors, three battery voltage sensors (one
in each compartment), and three battery current sensors.

The pod plate pressure sensors, the touch-sensitive whiskers, and the core faceplate
pressure sensors would not ordinarily be considered sensors for the internal environment,
but we include them here because they basically require physical contact with an external
object to produce an output. Thus they are neither predictive of contact, nor descriptive of
the typology of the immediate environment.

A vector of features, derived from the nine accelerometers, defines the conformation of
the vehicle (C). By measuring the acceleration vector in each trio of accelerometers and
comparing the measurements to each other, the relationship (tilt and camber) of the pods
to the core can be determined. When the motors are all quiescent, gravity is the only
influence on the accelerometers, and the accelerometer input is sufficient for an
unambiguous determination of conformation. Some examples of this vector are shown in
Figure 6.

When the pods are in motion with respect to the core, the pod accelerometers will sense
both the pod motion acceleration and gravity. The two effects will be confounded. The
conformation will be changing during these motion-imposed accelerations. The effects of
motion acceleration could be extracted from the effects of gravity as there is a very
predictable effect on the accelerometers with the different changes in axle position due to
activations of the motors. However, we yet do not have sensors for axle rotation. Thus
there will remain some conformation uncertainty until the pod and camber rotations stop.

13
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Figure 6. Accelerometer indicators of conformation.

The robot would compare information from its internal sensors to determine its present
conformation, and to assess the success of any attempts to change its conformation, but
the control algorithms have available information from all sensors at all times, some of
which may be irrelevant to the particular control decision, in this case — conformation,
but which later may become a disambiguifying factor. For example, during changes in
conformation, the pod plate pressure sensors and the whiskers will cooperate with the
accelerometers to determine whether the robot’s contacts are due either to the ground
plane, to an obstacle, or to an appropriate leverage point.

4.6. Fixed Action Patterns (FAP)
To control the six degrees of freedom during translation, and during the transition from

one conformation to the next, the robot will likely need several different behaviors

14
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composed of sets of coordinated motor commands. Similar organized behaviors, specific
to the physical makeup of an animal, and stereotypical in nature, are called Fixed Action
Patterns (FAP) in the Neuroethology community. I will use that term here as well. The
robot’s Fixed Action Patterns exhibit a predictable set of events characterized by
coordinated motor torques and timing. The Fixed Action Patterns do not necessarily
depend upon any particular environmental conditions, but may be invoked by triggers
related to the above sensors of the internal environment.

A network of delay elements that can be invoked as a unit will define each of the six
FAP. The connectivity of the elements in those units will define the sequence and
strength of commands to the 12 output elements. The sub-networks that manage the
different FAP are located in the box labeled fixed connections in Figure 5. The FAP
progress by the strength of the recent history of current pattern to evoke the next element
of the pattern. Thus, baring any changes in the external and internal environments, a
pattern, once initiated, may continue in an infinite loop. The impossibility of an infinite
behavioral loop, however, is obvious, as behavior itself will produce changes in both
environments, disrupting the behavior.

4.6.1. Fixed Action Pattern P. Porpoising

FAP-P may be attempted when the robot is fully immersed in a liquid medium and is
neutrally buoyant. Immersion would be sensed with the present sensor suite by the
absence of contact information from any of the whiskers or plate pressure sensors. Under
these conditions, the rearward track pod would assume a position 180 degrees to the rear
and oscillate, while the forward track pod would maintain its normal position with respect
to the core and then oscillate in counter phase with the rearward track pod. The net result
of the oscillations of the two pods should be a porpoising of the robot through the liquid
medium. Diving and surfacing could be accomplished by varying the angles of the
forward and rearward pods around which the oscillations are made.

4.6.2. Fixed Action Pattern R. Resting to Running

FAP-R permits the robot to run consistently and rapidly in a particular direction on a
smooth planar surface. This FAP prefers the conformation shown in Figure 4.a. Sensor
conditions that would favor this FAP are significant pod plate pressure, and the absence
of whisker contact. To achieve this conformation, the robot assesses its core
accelerometer values. If the Y-axis (see Figure 7) is at +/- 1, the core is horizontal on
whatever surface the robot is resting. The robot then attempts to match the Y-axes of the
two pods with the core Y-axis value by rotating the pods away from their contact points
without upsetting the Y-axis value. A stable surface would permit this maneuver and the
robot could then close to its normal preferred conformation.

To execute a run command from the normal closed position, the simplest mechanism

would be to have the two track motors run essentially at the same speed. Speed control
may be modulated by accelerometers on the X and Z-axes.
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Changes in direction of travel could reactively occur in response to the asymmetric
detection of obstacles along the trajectory. The sensor detecting the obstacle, activation of
pod whiskers for example, could trigger a turn away from the obstacle by biasing the X-
axis accelerometer output to the motor controllers. The robot could turn most efficiently
by lifting the ends of one or both pods off of the surface during the turn. Which end is
lifted could depend upon the desired direction of the turn.

If the robot was positively or negatively (but not neutrally buoyant) the robot could use
FAP-R to swim on the surface of a liquid medium or crawl on the bottom of its container
respectively.

Figure 7. Vehicle Motion Axes

4.6.3. Fixed Action Pattern S. Scaling

FAP-S permits the robot to scale a large non-vertical obstacle by a combination of
walking and running. The robot would normally initiate the FAP-S by encountering an
obstacle with its whisker sensors. To accomplish scaling, the robot could rotate its two
pods outward from the normal closed conformation until contact is reestablished on the
pressure plates. If the forward pod is on the right of the vehicle, the rotation of both pods
would be counter-clockwise, while the reverse direction of rotation would be performed
if the vehicle was inverted at the time of first contact. During rotation, the forward
tracked pod would normally make contact with the obstacle before the rearward pod
again made contact with the ground plane, and the robot would pull itself up on the
obstacle using a combination of its track tread rotations and forward track pod rotation. If
the obstacle was short, the rotation could continue and the robot would pull itself over the
obstacle. Any unevenness of the obstacle, such as a staircase, could cause the forward
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pod to continue in its rotation (as it is yet leading and yet in the open conformation so that
the same direction of rotation would be maintained, causing the pod to complete a full
rotation), and the rearward pod to oscillate or porpoise as the pod attempts to improve its
traction with the obstacle.

The robot could perform a descent down a slope by maintaining the same pattern as was
used in the ascent.

A similar combination of walking and porpoising could also be used to propel the robot
across the surface of a liquid in which it was positively buoyant.

4.6.4. Fixed Action Pattern T. Tumbling

FAP-T permits the robot to tumble by alternately rotating the pods around the core in a
consistent direction. One use for tumbling could be to dismount from a straddle position
on a beam. A conceivable trigger for this FAP could be the absence of forward and
rearward motions by any other FAP. The tumbling could be performed most efficiently
from the normal closed position (Figure 4.a). To initiate tumbling, one pod on the side to
which tumbling would progress would begin a rotation under the core. After a lag, the
second pod would begin its rotation under the core. This would tend to bring the core
over the pod with the first rotation. Next, after completing its range of rotation, the
direction of rotation would change on the first pod, while the second pod would continue
with its rotation progress under the core while the core was being lifted away from the
first pod. Upon completion of its rotation transit, the second pod would also reverse its
direction of rotation and move to complete the inversion of the platform. As either pod
reached the limits of rotation in either direction it would change direction and repeat the
process. In this way, the tumbling could be completed. Alternatively, the rates of rotation
could differ, with the pod moving faster initially in the direction of the tumble. The rate
as well as the direction of rotation could alternate at each range limit. The pods could also
rotate on their connecting arms to facilitate tumbling by moving the center of gravity
further away from the core.

4.6.5. Fixed Action Pattern U. Undulating.

FAP-U permits the robot to elevate its core above the terrain without moving forward. A
conceivable trigger for this behavioral pattern could be the detection of low battery
capacity. An elevated core might make the robot easier to find. Other triggers could
include loss of RF signal, and SONAR indication of a blocked visual field. Thus
elevating the core could also improve radio communications, and it could give the robot’s
video cameras a better perspective above ground rubble. Accelerometers would provide
the primary sensor input during the execution of this FAP. Undulation could begin from
the normal closed position by rotating both pods outward. Undulation could proceed by
continuing the rotation until the core ascends to its apogee and begins again to descend.
The undulation could be halted at this point whereupon the core would be at its most
elevated position with respect to the ground plane. Because of the wide tracks, the robot
should be stable in this position, but during movement, stability could be achieved either
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by adjusting the rotation of either pod or by adjusting the direction and rate of the pod
track rotations, or both. Continuing the undulation would involve a reversal of the pod
rotations at this point. At the point of co-pod rotation where core elevation no longer
changes, the direction of pod rotation would again change lifting the core again to its
apogee.

From the core perigee, continuing the pod rotations in the same direction would restore
the robot conformation to the normal closed position.

To achieve an extended position, useful on steep slopes, the rotation could be interrupted
as the core begins to lift from the surface during pod rotation.

4.6.6. Fixed Action Pattern W. Walking

FAP-W permits the robot to walk consistently in a particular direction on a variegated®
planar surface. In this pattern, the track treads could remain still or continue in rotation,
while the pods rotate on the core connection arm in alternating and parallel motions in the
direction of travel. FAP-W could evolve as both pods encounter obstacles’. The pod
whose core connection arm is located at the forward end of the core, as defined by the
direction of travel, begins to rotate first. This could be detected by the contact sensors on
the pods or on the core faceplate, or by the accelerometer data. The forward pod would
rotate forward as in the FAP-S. However, when the first pod was rotated fully forward,
the second pod rotation would begin also in the forward direction. This would tend to
elevate the core. Afterwards, the two pods could continue with their rotations at
equivalent rates, remaining about 180 degrees out of phase, undulating the core up and
down over the variegated surface. Turning on such a surface could be accomplished by
activating the tracks in addition to the pod rotations, by differentially rotating the pods,
and by changing the camber angle of the pods.

4.6.7. Fixed Action Pattern Y. Yawing

FAP-Y may permit the robot to squeeze through a narrow passageway. The trigger for
this maneuver could be activation only of the forward outboard pod whiskers while the
robot was in the normal closed position. That pattern of activation could indicate a gap
through which the robot could attempt to squeeze'’. The minimum gap width that the
present NGV could negotiate is approximately eight inches. This pattern begins by the
NUGYV backing up and extending the pods outward as in FAP-U, however, at the point
where the pods are horizontal with the core, a camber command is triggered that draws
both pods in (down with respect to gravity). This maneuver will force the pods to rest on

¥ An example of a variegated planar surface over which it would be appropriate for this NUGV to walk
would be an extended egg-carton with compartments in sufficient quantity and size to hold 144 basket
balls.

? The difference between FAP-W and FAP-S could be in the accelerometer indications of core and pod
position when the obstacles are encountered. A consistently inclined core indicates the predominance of the
obstacle in the forward direction, while an oscillating core indicates a variegated surface that may be better
managed by the FAP-W.

1 Normally FAP-Y would not be attempted when alternative action patterns were available.
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the outboard edges of their track treads. Then, alternately rotating further the ends of the
pods while moving forward should cause the vehicle to Yaw back and forth. If the rate of
Yaw is correct, the vehicle should pass through an orifice of dimension down to the
minimum. The principle here is that the pods are alternately rotated while the pod camber
angle directs the angle of attack of the treads to turn the vehicle. But a similar pattern
may be accomplished by simple skid steering of the vehicle while in the open position.

4.7. Summary of the Fixed Action Patterns

The various Fixed Action Patterns are summarized in Table 1.

Fixed Action Pattern Trigger Expected Conditions
P Porpoise Absence of any contact Immersion
R Run Movement commanded by | Obstacle free

the activity monitor in the
absence of whisker output

S Scale Obstacle is detected in the Obstacles
forward direction of travel
by whiskers. Core
accelerometer indicates
consistent ascending or
descending pattern.

T Tumble Both forward and reverse Entrapment
motion are blocked

U Undulate Low battery voltage; Poor visibility, poor RF
obstacle detection; loss of communications, low power
RF input reserves.

W Walk Velocity < expected, Variegated surface
obstacles. Core Mud and other impediments

accelerometer indicates
inconsistent ascending or
descending pattern.

Y Yaw Outboard whisker activation | Presence of a traversable
gap

Table 1. Fixed Action Patterns

The Fixed Action Patterns are low-level behavioral repertoires by which the robot
coordinates its movements. The set of Fixed Action Patterns pretty much is inclusive of
all of the maneuvers possible with the six degrees of motion freedom that are available to
the robot. A greater diversity of overt behavior could be observed when the internal
conditions evolve during behavior and trigger transitions among the patterns. These
transitions could occur at any time during a behavior, and do not require the completion
of one pattern before the initiation of another. The Fixed Action Patterns are behaviors to
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which the robot would default under certain circumstances that required some behavior
but for which requirements for no other task-specific actions were evident.

4.8. Direction and Extent of Pod Rotations Define the Patterns
Five of the seven Fixed Action Patterns (less FAP-T and FAP-Y) differ primarily on the

directions and extents of the pod rotation with respect to the core. These differences are
shown in Figure 8.
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Figure 8. Pod Rotation Differences between five of the seven Fixed Action Patterns

4.9. The Behavioral Constraints

The behavioral constraints are simple reactive behaviors that constrain other behaviors to
prevent serious disturbances to homeostasis. Thus I will call these reactive behaviors
Basic Reactive Patterns (BRP). The robot will come from the factory equipped with a
few pre-planned'' BRP that respond to critical events in ways that would restore the
sensors of those events to their states before the events occurred. The sensors involved
are those that monitor the key homeostatic conditions. The BRP occur when certain pre-
established sensor threshold values are breached. The sub-networks that manage the

" Pre-planned in the sense that the rules that govern the definition of the transfer functions between input
and output are pre-determined in the design of the controller, and yet are subject to rapid as well as slow
adaptations to improve performance and compensate for hardware drift.
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different BRP are located among the boxes labeled fixed connections and plastic
connections in Figure 5.

For our robot, these critical events should be: loss of mobility or inactivity, loss of core
balance, loss of track contact, collision with the core face plates, and loss of energy. We
selected these critical events for their relevance to the viability of the robot under the
conditions with which we expect it to normally operate. Other critical events could be
considered, and appropriate sensors supplied, such as for temperature, water infiltration,
and tampering, either physically or electronically.

The Basic Reactive Patterns do not necessarily take the robot to any specific location or
in any specific direction, but do continually act to correct or shape any ongoing random,
pre-programmed (such as the fixed action patterns), and/or acquired behaviors of the
robot.

Previously I described seven Fixed Action Patterns that can be assumed by the robot in
response to various internal sensor conditions. All of these behaviors are stereotypical in
the sense that they are completely predictable given the constellation of sensor conditions
in the internal environment. The five Basic Reactive Patterns that I will now describe will
constantly modulate the seven Fixed Action Patterns.

4.9.1. Basic Reactive Pattern A. Activity

The objective of BRP-A is to prevent the robot from either moving too slowly or moving
too rapidly. Movement may be assessed by the integration of the accelerometers and
sensors monitoring the rotations of the track drive wheels. There will be a range of
activity that is optimal for the performance of the robot and director. No activity is, by
definition, undesirable for a mobile robot. High levels of activity, while potentially useful
under extreme circumstances, will more quickly deplete the energy reserves of the
vehicle, subject it to destructive collisions, and reduce the usefulness of sensor
information that is returned to the human observer during monitoring. Thus the extremes
of inactivity and activity should be avoided. To accomplish this, the very low or very
high activity readings should contribute to increases or decreases in activity as
appropriate to maintain activity within the preferred range.

The Gaussian curve in Figure 9 shows the expected relationship of activity levels and
system performance. To optimize performance, the system attempts to keep activity in
the preferred mid range by modulating the activity of the 12 output elements. An
alternative approach is to use the activity gain to modify the general inhibitory or
excitatory influences within the controllers. Specific inhibitory or excitatory control
commands needed to execute any particular behavior could be adjusted by these gains.
Should we take this approach to modulation, then a slow stealthy movement of the robot
could be performed while the accelerometer input was attempting to move the system to
the right in Figure 9. Under that circumstance, a sudden decision to execute an evasive
maneuver would be facilitated by the elevated excitatory gains and depressed inhibitory
gains.
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Figure 9. Relationship between preferred activity levels and performance.

In an artificial system, to achieve some independence from the fickle motivations of its
operator, the robot must provide an internal provocation that is linked to activity itself.
This internal provocation should contribute to an apparent spontaneity that permits trial
and error learning and the exercise of learned behavioral patterns.

To move without an explicit or external provocation the robot could have in its control
algorithm a parameter that assesses the total dynamics of its actuators. The dynamics of
the system are characterized by the accelerometer (A) activity. Let this quantity be D.
Then

Din =Y A.
D should persist over time (¢) with some factor (p) to damp out rapid fluctuations.

D;=p*D¢.1 + Din

The robot should operate usually in the midrange of its capability as shown in Figure 8.
Thus an optimal D should be MaxD/2.

If D is less than MaxD/2, then motor activation commands should be amplified by the
difference. If D is greater than MaxD/2, motor inhibition commands could be amplified
by the difference.

Dout = (1.0 — 2*D/MaxD)
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Doyt will range from +1.0 to —1.0.

D,ut should affect all output elements equally. Although in the alternative implementation
the influence may be indirect via the intervening excitatory (E) and inhibitory (I)
elements (see Figure 8). For example:

If Doyt > 0, then
CL= Dout*z ECL -2 ICL
Else CL =X EcL + Dout*Z I

As these output elements are coupled to mechanical process with inertia, the principal
effect of changing D will be to change the overall rate at which the activity proceeds'?.

Various non-linear functions may be applied to smooth and limit this process. (see
Blackburn, 1987).

4.9.2. Basic Reactive Pattern B. Balance

The objective of the BRP-B is to prevent falls and consequent damage to the vehicle. As
the orientation and motion of the core will be the primary determinants of balance,
balance may be assessed by the core accelerometers. The core will be taken along in
many different ways, however, with the motions of the two track pods, but when these
motions are expected, or predicted by the motor commands, they are at least purposeful,
if not as dangerous as those occurring by accident. Balance or losing balance thus should
depend upon whether the event was expected or not. To establish an expectation, the
automatic control algorithms must make some predictions about how the core
accelerometer data are going to change with a particular maneuver. If those predictions
occur, then balance is maintained, however if events contradict those predicted changes,
then balance would be upset. This prediction should be on-going and depend upon the
integration of data from three vectors: 1) the pattern of activations of the different motors,
2) the pod leverage points, and the current conformation of the vehicle.

Balance would be calibrated continuously. This is most easily seen when the robot is
planning to remain stationary on a stationary surface. Under that condition, its planning
may involve nothing more than the absence of a decision to move. At this time the robot
would be predicting no changes in its core accelerometers. Therefore, any change in the
accelerometers indicates an unexpected change in balance, and should be met with a
reactive and corrective response from its motors. Should part of the surface on which the
robot is resting give way suddenly, the robot’s accelerometer data would change as its
core moves under the influence of gravity. This acceleration can be countered by
activation of the track pod axes that would normally produce an acceleration in the
direction opposite to the that of the fall, given its current configuration. The calculation
needed is essentially an inverse of that used to predict a core acceleration in the particular

2 The control processes should be less rate sensitive, and more position sensitive, so that an action will
continue until completion before the next action is initiated.
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direction of the error. For this calculation, we can use artificial neural networks that have
a design rich in feedback. We will shortly describe a candidate neural network for this

purpose.

While the expected pod accelerations for any activation of its motors is easily determined
given fixed positions of the core, this will not ordinarily be the case with our NUGV. Nor
will it ordinarily be our concern, as we need to predict the core accelerometer activity
with activations of the pod motors. The core will be subject to disturbances caused by
activation of any of the motors, and in all possible combinations while the pods
themselves are at a great number of different positions with respect to the core and to
their leverage points. Predicting the core accelerations is a complex multivariate problem.

The expected accelerations of the core will be functions of the motor commands of the
vehicle (M), the present conformation of the vehicle (C), and the leverage points (L).

A.=fM, C,L)

I have already defined the elements of the motor vector (M) and of the conformation
vector (C).

The leverage point vector (L) is simply a feature set from the collection of data points
from the sensors that detect and locate pod contact. The sensors that participate in this
collection are the pod whiskers and the pod plate pressure sensors. For illustration
purposes, let us assume that the contact profile for each pod was assessed by only four
discrete sensors, each sensor either being on or off. One sensor would be located at each
end of the pod, and one located on each pod plate. Then the pod contact could be
determined to the resolution of those four locations by one of sixteen different features as
shown in Figure 10. All conditions for each of the integrating elements a-p must be
present before an output can occur. In the Figure, an input line terminating in arrow
indicates the requirement for an active input, while the input line terminating in a dot
indicates the requirement for an inactive input.

At this point, I should note that the sensor vectors undergo significant organization in
most training algorithms for multi-layer perceptrons. An interim result of this
organization is a vector of feature detectors similar to what [ have shown in Figure 10.
The network designer can greatly simplify the process of self-organization in a multi-
layer perceptron by prescribing the connectivity that defines inclusively all of the
potentially relevant features that are available from the sensor vector, even if some of
those features are never used by the network in calculating the required (trained) output
vectors.
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Figure 10. Firing conditions of sixteen hypothetical feature detectors.

The actual calculation of A, can be performed rather quickly as long as the influences of
the different motor commands given the different conformations and leverage points are
known. We can discover these influences by observing what happens to the core
acceleration under a variety of these conditions, and construct the gains of the function
that calculates A.. This process is graphically demonstrated in Figure 11. The dotted
circles in the Figure represent the conditioning signal. Facilitation is represented by line
terminating in an arrowhead. Inhibition is represented by a line terminating in a dot.

Errors (E) in balance are detected by unexpected changes in the core accelerometers (A4).
The unexpected measure is a function of the difference between the expected (e) and the
actual (a) reading.

E =f(Ae, A

In the process of defining the function that predicts core accelerations, the observed core
acceleration with a particular controlled activation of the pod motors is compared with
the current output of the integrator that develops the expected core acceleration. Initially
there will be completely nonsensical prediction, and the error vector (E) will either look
pretty much like A, or like parts of it. This error is passed back over to the expectation
integrator to modify the gains that determine the influence of its inputs. I give the
modification rule in the section on Activity Dependent Facilitation later in this paper.
Under controlled conditions, the network learns to predict what actually happens to the
core accelerometers.
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Figure 11. Method for the acquisition and execut